If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1510=75t+4.905t^2
We move all terms to the left:
1510-(75t+4.905t^2)=0
We get rid of parentheses
-4.905t^2-75t+1510=0
a = -4.905; b = -75; c = +1510;
Δ = b2-4ac
Δ = -752-4·(-4.905)·1510
Δ = 35251.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-75)-\sqrt{35251.2}}{2*-4.905}=\frac{75-\sqrt{35251.2}}{-9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-75)+\sqrt{35251.2}}{2*-4.905}=\frac{75+\sqrt{35251.2}}{-9.81} $
| v=3v-4 | | -6+12-16=x | | 4x−3=2x+5 | | 129+3(x+9)=180 | | 8-m-3m=16m= | | t/5+36=31 | | -3x-6=-5x+4 | | -11/5x=-132/3 | | d/9+-29=-34 | | 5-4(y-1)=26(y-1) | | 3+6m=87 | | 4x=6=2x-8 | | 4x-25+x=14=6x-51 | | 4x-25+x-14=6x-5 | | -26=-8w+6(w-7) | | 7x^2=-191 | | x(2x-3)=104 | | 20+9j=-16 | | 3x+2(x+12)=-3(x+8) | | 3m+10=1095 | | 6(y+5)-8y=10 | | 2x-3+x+x+3=180 | | 20=8w=36 | | |k+3|/3=4 | | 22=10y-8 | | 2x+1.3x=-0.7x+32 | | 5(x-6)=-3x-38 | | 4x-25+x-14=6x-51 | | 7w-17=4 | | 5a-5=7+2a= | | 18-4w=-22 | | (y+1)(y+4)=0 |